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Aren’t 64 (or 80) bits enough? 

Almost all scientific computers (from PCs to supercomputers) now feature 
IEEE-754 64-bit floating-point arithmetic.  Many systems feature 80-bit 
hardware, although results are typically rounded to 64-bits before storing. 

However, for a growing body of numerical algorithms and applications, 64 (or 
80) bits aren’t enough: 

  Algorithms involving linear systems with large condition numbers. 
  Summations of series with oscillating terms and many cancellations. 
  Iterative calculations with many steps. 
  Very highly parallel computations, which greatly exacerbate numerical 

difficulties. 
  Studies in experimental mathematics – hundreds or thousands of digits. 

Increasingly, researchers and engineers who develop and use codes are not 
experts in numerical analysis and may not realize the potential difficulties. 

Using high-precision arithmetic is often the easiest way to solve numerical 
problems, even if other, more sophisticated solutions are possible. 
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Innocuous-looking example where high 
precision is required 

Consider this simple problem:  Find a polynomial function to fit the data (5, 2304, 
118101, 1838336, 14855109, 79514880, 321537749, 1062287616, 3014530821). 

The usual approach is to solve the linear system: 

using Matlab, Linpack or LAPACK.  A computation with 64-bit (or 80-bit) floating-point 
arithmetic fails to find the correct result. 

However, if, say, the Linpack routines are converted to use double-double arithmetic 
(approx. 31-digit accuracy), the above computation quickly concludes that the input 
data is exactly given by the simple formula: 
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f(k) = 5 + 220k2 + 990k4 + 924k6 + 165k8
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Progress of Scientific Supercomputers: 
Data from the Top500 List 
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Very highly parallel computations 
exacerbate numerical difficulties 

Consider the very simple 1-D differential equation y''(x) = - f(x) for some function f(x). 
Discretization of this system immediately leads to the matrix 



2 −1 0 0 · · · 0
−1 2 −1 0 · · · 0
0 −1 2 −1 · · · 0
· · · · · ·
0 · · · −1 2 −1 0
0 · · · 0 −1 2 −1
0 · · · 0 0 −1 2





whose condition number, for large n, is approximated by  

κ(n) ≈ 4(n + 1)2

π2

For the huge values of n now being used in highly parallel calculations, κ(n) is large 
enough that results (depending on the function f(x)) may not be numerically reliable. 
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Free software for high-precision 
computation 

  ARPREC.  Arbitrary precision, with many algebraic and transcendental functions. 
High-level interfaces for C++ and Fortran-90 – existing codes can be converted 
with only minor effort.  Available at http://crd.lbl.gov/~dhbailey/mpdist. 

  GMP.  Produced by a volunteer effort and is distributed under the GNU license by 
the Free Software Foundation.  Available at http://gmplib.org. 

  MPFR.  C library for multiple-precision floating-point computations with exact 
rounding, based on GMP.  Available at http://www.mpfr.org. 

  MPFR++.  High-level C++ interface to MPFR.  Available at  
 http://perso.ens-lyon.fr/nathalie.revol/software.html. 

  GMPFRXX.  Similar to MPFR++.  Available at  
 http://math.berkeley.edu/~wilken/code/gmpfrxx. 

  MPFUN90.  Similarto ARPREC, but is written entirely in Fortran-90 and provides 
only a Fortran-90 interface. Available at http://crd.lbl.gov/~dhbailey/mpdist. 

  QD.  This package perform “double-double” (approx. 31 digits) and “quad-
double” (approx. 62 digits) arithmetic.  C++ and Fortran-90 high-level interfaces. 
Available at http://crd.lbl.gov/~dhbailey/mpdist. 

All of these packages greatly increase run time – from ~5X for double-double to 
~1000X for arbitrary precision with 1000 digits. 
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Some applications of  
high-precision arithmetic 

  Supernova simulations (32-64 digits). 
  Climate modeling (32 digits). 
  Planetary orbit calculations (32 digits). 
  Coulomb n-body atomic system simulations (32-120 digits). 
  Schrodinger solutions for lithium and helium atoms (32 digits). 
  Electromagnetic scattering theory (32-100 digits). 
  Scattering amplitudes of quarks, gluons and bosons (32 digits). 
  Theory of nonlinear oscillators (64 digits). 
  Experimental mathematics (100-20,000 digits). 
  Evaluating orthogonal polynomials (32-64 digits). 
  High-precision ordinary differential equations (100-550 digits). 
  Detecting “strange” nonchaotic attractors (32 digits). 
  Ising integrals from mathematical physics (100-1000 digits). 
  Discrete dynamical systems (32 digits). 
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Supernova simulations 

  Researchers at LBNL are using QD to 
solve for non-local thermodynamic 
equilibrium populations of iron and other 
atoms in the atmospheres of supernovas. 

  Iron may exist in several species, so it is 
necessary to solve for all species 
simultaneously. 

  Since the relative population of any state 
from the dominant state is proportional to 
the exponential of the ionization energy, 
the dynamic range of these values can be 
very large. 

  The quad-double portion now dominates 
the entire computation. 

P. H. Hauschildt and E. Baron, “The Numerical Solution of the Expanding Stellar Atmosphere Problem,” 
Journal Computational and Applied Mathematics, vol. 109 (1999), pg. 41-63. 
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Climate modeling 

  Climate and weather simulations are 
fundamentally chaotic – if microscopic 
changes are made to the current state, 
soon the future state is quite different. 

  In practice, computational results are 
altered even if minor changes are 
made to the code or the system. 

  This numerical variation is a major 
nuisance for code maintenance. 

  He and Ding of LBNL found that by 
using double-double arithmetic to 
implement a key inner product loop, 
most of this numerical variation 
disappeared. 

Yun He and Chris Ding, “Using Accurate Arithmetics to Improve Numerical Reproducibility and Stability in 
Parallel Applications,” Journal of Supercomputing, vol. 18, no. 3 (Mar 2001), pg. 259-277. 
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Coulomb N-body atomic system 
simulations 

  Alexei Frolov of Queen’s University in Canada has used MPFUN90 to 
solve a generalized eigenvalue problem that arises in Coulomb n-body 
interactions. 

  Matrices are typically 5,000 x 5,000 and are very nearly singular. 
  Frolov has also computed elements of the Hamiltonian matrix and the 

overlap matrix in four- and five-body systems. 
  These computations typically require 120-digit arithmetic. 

“We can consider and solve the bound state few-body problems which have 
been beyond our imagination even four years ago.” – Frolov 

A. M. Frolov and DHB, “Highly Accurate Evaluation of the Few-Body Auxiliary Functions and Four-Body 
Integrals,” Journal of Physics B, vol. 36, no. 9 (14 May 2003), pg. 1857-1867. 
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Experimental math: Discovering new 
mathematical results by computer 

  Compute various mathematical entities (limits, infinite series sums, 
definite integrals) to high precision, typically 100-1000 digits. 

  Use algorithms such as PSLQ to recognize these entities in terms of well-
known mathematical constants. 

  When results are found experimentally, seek to find formal mathematical 
proofs of the discovered relations. 

Many results have recently been found using this methodology, both in pure 
mathematics and in mathematical physics. 

“If mathematics describes an objective world just like physics, there is no 
reason why inductive methods should not be applied in mathematics just 
the same as in physics.” – Kurt Godel 

Mathematics Computer 
science 

Scientific 
computing Mathematics 
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The PSLQ integer relation algorithm 

Let (xn) be a given vector of real numbers.  An integer relation algorithm 
finds integers (an) such that  

1.  H. R. P. Ferguson, DHB and S. Arno, “Analysis of PSLQ, An Integer Relation Finding Algorithm,” 
Mathematics of Computation, vol. 68, no. 225 (Jan 1999), pg. 351-369. 
2.  DHB and D. J. Broadhurst, “Parallel Integer Relation Detection: Techniques and Applications,” 
Mathematics of Computation, vol. 70, no. 236 (Oct 2000), pg. 1719-1736. 

(or within “epsilon” of zero, where epsilon = 10-p and p is the precision).  

At the present time the “PSLQ” algorithm of mathematician-sculptor 
Helaman Ferguson is the most widely used integer relation algorithm.  It 
was named one of ten “algorithms of the century” by Computing in Science 
and Engineering. 

PSLQ (or any other integer relation scheme) requires very high precision (at 
least n*d digits, where d is the size in digits of the largest ak), both in the 
input data and in the operation of the algorithm. 

a1x1 + a2x2 + · · · + anxn = 0
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PSLQ, continued 

  PSLQ constructs a sequence of integer-valued matrices Bn that reduces 
the vector y = x * Bn, until either the relation is found (as one of the 
columns of Bn), or else precision is exhausted. 

  At the same time, PSLQ generates a steadily growing bound on the size 
of any possible relation. 

  When a relation is found, the size of smallest entry of the vector y 
suddenly drops to roughly “epsilon” (i.e. 10-p, where p is the number of 
digits of precision). 

  The size of this drop can be viewed as a “confidence level” that the 
relation is real and not merely a numerical artifact -- a drop of 20+ orders 
of magnitude almost always indicates a real relation. 
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Decrease of log10(min |xi|) in PSLQ 
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PSLQ discovery: 
The BBP formula for Pi 

In 1996, this new formula for π was found using a PSLQ program: 

This formula permits one to compute binary (or hexadecimal) digits of π 
beginning at an arbitrary starting position, using a very simple scheme that 
can run on any system, using only standard 64-bit or 128-bit arithmetic. 

Recently it was proven that no base-n formulas of this type exist for π, 
except n = 2m. 

1.  DHB, P. B. Borwein and S. Plouffe, “On the rapid computation of various polylogarithmic constants,” 
Mathematics of Computation, vol. 66, no. 218 (Apr 1997), pg. 903-913. 
2.  J. M. Borwein, W. F. Galway and D. Borwein, “Finding and excluding b-ary Machin-type BBP formulae,” 
Canadian Journal of Mathematics, vol. 56 (2004), pg 1339-1342. 
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Some other new BBP-type formulas 
discovered using high-precision PSLQ 
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where ζ is the Riemann zeta function. 
DHB, “A compendium of BBP-type formulas,” 2010, http://crd.lbl.gov/~dhbailey/dhbpapers/bbp-formulas.pdf. 
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A connection between BBP formulas 
and digit randomness 

Let {} denote fractional part.  Consider the sequence defined by x0 = 0, 

We showed that π is 16-normal (“random” base-16 digits in a certain sense) 
if and only if this sequence is equidistributed in the unit interval. 

Further, we proved that the following mathematical constant is 2-normal: 

1.  D. H. Bailey and R. E. Crandall, "On the Random Character of Fundamental Constant Expansions," 
Experimental Mathematics, vol. 10, no. 2 (Jun 2001), pg. 175-190.  
2.  D. H. Bailey and R. E. Crandall, “Random Generators and Normal Numbers,” Experimental Mathematics, 
vol. 11, no. 4 (2002), pg. 527-546."
3.  D. H. Bailey, "A Pseudo-Random Number Generator Based on Normal Numbers," manuscript, Dec 2004, 
http://crd.lbl.gov/~dhbailey/dhbpapers/normal-random.pdf."

xn =
�

16xn−1 +
120n2 − 89n + 16

512n4 − 1024n3 + 712n2 − 206n + 21
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α2,3 =
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3n23n

= 0.041883680831502985071252898624571682426096 . . .10

= 0.0ab8e38f684bda12f684bf35ba781948b0fcd6e9e0 . . .16
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Discovering AND proving new 
mathematical formulas by computer 

For certain types of mathematical formulas, we can discover them using 
PSLQ, then prove them using the Wilf-Zeilberger algorithm.   

Here is one example of a new mathematical result that was both discovered 
and proven by computer: 
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DHB, J. M. Borwein and D. M. Bradley, “Experimental Determination of Apery-Like Identities for Zeta(2n+2),” 
Experimental Mathematics, vol. 15 (2006), pg. 281-289. 



19 

Orthogonal polynomials in Sobolev spaces 

Given a set of K evaluation points, a set {r1, …, rK} of indices of the maximum order of 
derivatives at the evaluation points, and non-negative coefficients λji, define 

�p, q�W =
�

R
p(x) q(x) dµ0(x) +

K�

j=1

rj�

i=0

λji p(i)(cj) q(i)(cj), λji ≥ 0

The formulas that have been derived to obtain basis coefficients for this metric are 
quite unstable numerically, in part because of the need to compute derivatives of 
polynomials at support points of discrete measures.  Derivative calculations by 
themselves often lead to serious rounding errors. 

1. R. Barrio, B. Melendo  and S. Serrano, “Generation and evaluation of orthogonal polynomials in discrete 
Sobolev spaces I. Algorithms,” Journal of Computational and Applied Mathematics, vol. 181 (2005), 280-298."
2. R. Barrio and S. Serrano, “Generation and evaluation of orthogonal polynomials in discrete Sobolev spaces 
II. Numerical stability,” Journal of Computational and Applied Mathematics, vol. 181 (2005), 299-320. 
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Computing norms of orthogonal polynomials 
using 128-bit and 256-bit arithmetic 
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Evaluation (degree 0 to 50) of the square of the L2-norm of four families of Sobolev orthogonal 
polynomials compared with the associated classical orthogonal polynomials.  

On the left, Chebyshev-Sobolev polynomials with: (a) one mass point (1.5) up to first derivative, 
lambda = 1/10, using 128 bits, (b) three mass points (-1, 0, 0.5) up to third derivative, lambda = 
1/10, using 128 bits, and (c) the same as (b) but using 256 bits.  

On the right, Hermite-Sobolev polynomials with: (d) one mass point (1.5) up to first derivative, 
lambda = 1/10, using 128 bits, (e) three mass points (-1, 0, 0.5) up to 5th derivative, lambda = 
1/10, using 128 bits, and (f) the same as (e) but using 256 bits. 
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Error bounds in Chebyshev-Sobolev: 
Double vs multiple precision 
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Behavior of the theoretical error bounds (T4 a backward error bound and T5 for the running 
error bound) and the relative error in the double- and multiple-precision evaluation of the 
Chebyshev-Sobolev approximation of degree 50 of the function f(x) = (x+1)2 sin(4x), where 
the discrete Sobolev measure have one mass point (c = 1) up to first derivative in the discrete 
part of the inner product.  

In the figure on the left we use double precision and on the right multiple-precision (on the left 
of the vertical line we use 96 bits on the mantissa and 64 on the right part). 
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Taylor’s method for the solution of ODEs 

Taylor’s method is one of the oldest numerical schemes for solving ODEs, but in 
recent years has re-emerged as the method of choice in the computational dynamics 
community because of speed to convergence. 

Consider the initial value problem y’ = f(t, y).  The solution at time t = ti is: 

y(t0) =: y0,

y(ti) � yi−1 + f(ti−1, yi−1)hi + · · · +
1
n!

dn−1f(ti−1, yi−1)
dtn−1

hn
i

=: yi

The Taylor coefficients here may be found using automatic differentiation methods. 

One disadvantage with Taylor’s method is that it often requires high-precision 
arithmetic.  But when implemented with high-precision, Taylor’s method typically 
gives superior results, compared with other available schemes (see next talk.) 

A. Abad, R. Barrio, F. Blesa and M. Rodriguez, “TIDES: a Taylor series Integrator for Differential EquationS,” 
preprint, 2010. 
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Taylor’s method with high-precision 
arithmetic 

TIDES (Taylor) dop853
Precision Tol CPU Time RelErr CPU Time RelErr

dp 10−10 0.53E−02 0.201E−10 0.34E−02 0.205E−06
dp 10−15 0.12E−01 0.345E−13 0.15E−01 0.113E−11
qp 10−20 0.30E+00 0.300E−20 0.30E+01 0.102E−17
qp 10−25 0.61E+00 0.165E−26 0.12E+02 0.325E−23

mpf90 10−32 0.13E+01 0.782E−29
mpf90 10−64 0.89E+01 0.144E−65
mpf90 10−128 0.74E+02 0.432E−131

CPU time and final error using the Hairer-Wanner code 
(dop853) and a Taylor method (TIDES) with VSVO 
formulation for the Henon-Heiles problem, using different 
precision levels: double precision (dp) for tolerance levels 
10-10, 10-15, quadruple precision (qp) for tolerance levels 
10-20, 10-25, and multiple precision (mpf90) for tolerance 
levels 10-32, 10-64, 10-128.  The figure at the right shows the 
computed orbit (an orbit on a KAM tori). 
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Computing the “skeleton” of periodic 
orbits 
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Symmetric periodic orbits (m denotes the multiplicity of the periodic orbit) in the most 
chaotic zone of the (7+2) ring problem using double (A) and quadruple (B) precision. 

R. Barrio and F. Blesa, “Systematic search of symmetric periodic orbits in 2DOF Hamiltonian systems,” 
Chaos, Solitons and Fractals, vol. 41 (2009), 560-582. 
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Fractal properties of Lorenz attractors 

On the first plot, the intersection of an arbitrary trajectory on the Lorenz attractor with the 
section z = 27. The plot shows a rectangle in the x-y plane.  All later plots zoom in on a tiny 
region (too small to be seen by the unaided eye) at the center of the red rectangle of the 
preceding plot to show that what appears to be a line is in fact not a line.  Very high precision 
(hundreds of digits) are required for these results (see last talk of session). "

1. D. Viswanath, “The fractal property of the Lorenz attractor,” Journal of Physics D, vol. 190 (2004), 115-128."
2. D. Viswanath and S. Sahutoglu, “Complex singularities and the Lorenz attractor,” SIAM Review, to appear. 
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High-precision tanh-sinh quadrature 

Given f(x) defined on (-1,1), define g(t) = tanh (π/2 sinh t).  Then setting x = g(t) 
yields 

where xj = g(hj) and wj = g’(hj).   Since g’(t) goes to zero very rapidly for large t, the 
product  f(g(t)) g’(t)  typically is a nice bell-shaped function for which the Euler-
Maclaurin formula implies that the simple summation above is remarkably accurate.  
Reducing h by half typically doubles the number of correct digits. 

For our applications, we have found that tanh-sinh is the best general-purpose 
integration scheme for functions with vertical derivatives or singularities at 
endpoints, or for any function at very high precision (> 1000 digits).  Otherwise we 
use Gaussian quadrature. 

1.  DHB, Xiaoye S. Li and Karthik Jeyabalan, “A Comparison of Three High-Precision Quadrature 
Schemes,” Experimental Mathematics, vol. 14 (2005), no. 3, pg. 317-329. 
2.  H. Takahasi and M. Mori, “Double Exponential Formulas for Numerical Integration,” Publications of RIMS, 
Kyoto University, vol. 9 (1974), pg. 721–741. 

� 1

−1
f(x) dx =

� ∞

−∞
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Ising integrals from mathematical 
physics 

We recently applied our methods to study three classes of integrals that 
arise in the Ising theory of mathematical physics – Dn and two others: 

where in the last line uk = t1 t2 … tk. 

DHB, J. M. Borwein and R. E. Crandall, “Integrals of the Ising class,” Journal of Physics A: Mathematical 
and General, vol. 39 (2006), pg. 12271-12302. 
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Limiting value of Cn: 
What is this number? 

The Cn numerical values appear to approach a limit.  For instance, 

What is this limit?  We copied the first 50 digits of this numerical value into 
the online Inverse Symbolic Calculator (ISC): 
http://ddrive.cs.dal.ca/~isc   or   http://carma-lx1.newcastle.edu.au:8087/ 

The result was: 

where gamma denotes Euler’s constant.  Finding this limit led us to the 
asymptotic expansion and made it clear that the integral representation of 
Cn is fundamental. 

C1024 = 0.63047350337438679612204019271087890435458707871273234 . . .

lim
n→∞

Cn = 2e−2γ
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Other Ising integral evaluations found 
using high-precision PSLQ 

D2 = 1/3
D3 = 8 + 4π2/3− 27 L−3(2)
D4 = 4π2/9− 1/6− 7ζ(3)/2
E2 = 6− 8 log 2
E3 = 10− 2π2 − 8 log 2 + 32 log2 2
E4 = 22− 82ζ(3)− 24 log 2 + 176 log2 2− 256(log3 2)/3

+16π2 log 2− 22π2/3

E5
?= 42− 1984 Li4(1/2) + 189π4/10− 74ζ(3)− 1272ζ(3) log 2

+40π2 log2 2− 62π2/3 + 40(π2 log 2)/3 + 88 log4 2
+464 log2 2− 40 log 2

where ζ is the Riemann zeta function and Lin(x) is the polylog function.  D2, D3 and 
D4 were originally provided to us by mathematical physicist Craig Tracy, who hoped 
that our tools could help identify D5. 
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The Ising integral E5 

We were able to reduce E5, which 
is a 5-D integral, to an extremely 
complicated 3-D integral. 

We computed this integral to 250-
digit precision, using a highly 
parallel, high-precision 3-D 
quadrature program.  Then we 
used a PSLQ program to discover 
the evaluation given on the 
previous page. 

We also computed D5 to 500 
digits, but were unable to identify 
it.  The digits are available if 
anyone wishes to further explore 
this question. 
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Recursions in Ising integrals 

Consider the 2-parameter class of Ising integrals (which arises in QFT for odd k): 

After computing 1000-digit numerical values for all n up to 36 and all k up to 75 
(performed on a highly parallel computer system), we discovered (using PSLQ) 
linear relations in the rows of this array.  For example, when n = 3: 

Similar, but more complicated, recursions have been found for all n. 
1. DHB, D. Borwein, J. M. Borwein and R. Crandall, “Hypergeometric Forms for Ising-Class Integrals,” 
Experimental Mathematics, to appear, http://crd.lbl.gov/~dhbailey/dhbpapers/meijer/pdf. 

2. J. M. Borwein and B. Salvy, “A Proof of a Recursion for Bessel Moments,” Experimental Mathematics, vol. 17 
(2008), pg. 223-230. 

0 = C3,0 − 84C3,2 + 216C3,4

0 = 2C3,1 − 69C3,3 + 135C3,5

0 = C3,2 − 24C3,4 + 40C3,6

0 = 32C3,3 − 630C3,5 + 945C3,7

0 = 125C3,4 − 2172C3,6 + 3024C3,8
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Four hypergeometric evaluations 
(here cn,k = n! k! 2-n Cn,k) 

DHB, J. M. Borwein, D. Broadhurst and M. L. Glasser, “Elliptic Integral Evaluations of Bessel Moments,” 
Journal of Physics A:  Mathematical and General, vol. 41 (2008), pg 205203."

c3,0 =
3Γ6(1/3)
32π22/3

=
√

3π3

8 3F2

�
1/2, 1/2, 1/2

1, 1

�����
1
4

�

c3,2 =
√

3π3

288 3F2

�
1/2, 1/2, 1/2

2, 2

�����
1
4

�

c4,0 =
π4

4

∞�

n=0

�2n
n

�4

44n
=

π4

4 4F3

�
1/2, 1/2, 1/2, 1/2

1, 1, 1

�����1
�

c4,2 =
π4

64

�
44F3

�
1/2, 1/2, 1/2, 1/2

1, 1, 1

�����1
�

−34F3

�
1/2, 1/2, 1/2, 1/2

2, 1, 1

�����1
��
− 3π2

16



33 

2-D integral in Bessel moment study 

We conjectured (and later proved) 

Here K denotes the complete 
elliptic integral of the first kind 

Note that the integrand function 
has singularities on all four sides 
of the region of integration. 

We were able to evaluate this 
integral to 120-digit accuracy, 
using 1024 cores of the “Franklin” 
Cray XT4 system at LBNL. 
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� π/2

−π/2

K(sin θ)K(sinφ)�
cos2 θ cos2 φ + 4 sin2(θ + φ)

dθ dφ
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Lions-Mercer iterations 

The Lions-Mercer iteration, also known as the Douglas-Rachford or Feinup iteration, 
is defined by the procedure: reflect, reflect and average: 

x �→ T (x) :=
x + RA (RB(x))

2
In the simple 2-D case of a horizontal line of height α, we obtain the explicit iteration:  

xn+1 := cos θn, yn+1 := yn + α− sin θn, (θn := arg zn)

For 0 < α < 1, spiraling is ubiquitous:  (α = 0.95 on left, and 1.0 on right): 
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Exploring iterations using Cinderella 

Iterations such as this, as well as many other graphical phenomena, may be 
explored using the Cinderella online tool:   http://www.cinderella.de. 

Two applets have been defined, working with Cinderella, for exploring Lions-
Mercer iterations: 

A1. http://users.cs.dal.ca/∼jborwein/reflection.html 
A2. http://users.cs.dal.ca/∼jborwein/expansion.html 

For Applet A1, we observed that (see graphic on next slide):  
  As long as the iterate is outside the unit circle the next point is always 

closer to the origin; 
  Once inside the circle the iterate never leaves; 
  The angle now oscillates to zero and the trajectory hence converges to

(1,0). 
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Iterations with Applet A1 
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Iterations with Applet A2:  
Double vs multiple precision 
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Summary 

  Numerically sensitive features of many algorithms point to the need for 
numeric precision computation higher than the IEEE 64-bit standard. 

  The recent proliferation of very highly parallel systems has the potential 
of greatly exacerbating numerical difficulties. 

  Many real-world applications have now been identified that require 
double-double or quad-double arithmetic. 

  Some research studies, particularly in experimental mathematics and 
mathematical physics, require hundreds or even thousands of digits. 

  Software is now available, mostly for free, to permit conversion of 
computer programs to use higher precision. 

  Such high-precision software facilities are rapidly becoming an 
indispensible part of a modern high-performance computer system. 


